Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope

Identifieur interne : 000054 ( Chine/Analysis ); précédent : 000053; suivant : 000055

Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope

Auteurs : RBID : Pascal:13-0099574

Descripteurs français

English descriptors

Abstract

Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronics industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0099574

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope</title>
<author>
<name sortKey="Kundhikanjana, W" uniqKey="Kundhikanjana W">W. Kundhikanjana</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Stanford, CA 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Stanford, CA 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tanga, Q" uniqKey="Tanga Q">Q. Tanga</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lai, K" uniqKey="Lai K">K. Lai</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Stanford, CA 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y. Ma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Stanford, CA 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kelly, M A" uniqKey="Kelly M">M. A. Kelly</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Stanford, CA 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, X X" uniqKey="Li X">X. X. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shen, Z X" uniqKey="Shen Z">Z.-X. Shen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Stanford, CA 94305</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0099574</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0099574 INIST</idno>
<idno type="RBID">Pascal:13-0099574</idno>
<idno type="wicri:Area/Main/Corpus">001208</idno>
<idno type="wicri:Area/Main/Repository">000252</idno>
<idno type="wicri:Area/Chine/Extraction">000054</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Doping</term>
<term>Electrical conductivity</term>
<term>Impurity density</term>
<term>Indium additions</term>
<term>MIM structures</term>
<term>Microelectronics</term>
<term>Microwave conductivity</term>
<term>Protective coatings</term>
<term>Random-access storage</term>
<term>Scanning capacitance microscopy</term>
<term>Scanning microscope</term>
<term>Semiconductor devices</term>
<term>Semiconductor materials</term>
<term>Surface layers</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche superficielle</term>
<term>Mémoire accès direct</term>
<term>Conductivité hyperfréquence</term>
<term>Concentration impureté</term>
<term>Addition indium</term>
<term>Dispositif semiconducteur</term>
<term>Microélectronique</term>
<term>Microscope balayage</term>
<term>Conductivité électrique</term>
<term>Dopage</term>
<term>Revêtement protecteur</term>
<term>Structure MIM</term>
<term>Couche mince</term>
<term>Semiconducteur</term>
<term>7361</term>
<term>7340N</term>
<term>Microscopie capacité balayage</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Microélectronique</term>
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronics industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KUNDHIKANJANA (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YANG (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TANGA (Q.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZHANG (K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LAI (K.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MA (Y.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KELLY (M. A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LI (X. X.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SHEN (Z.-X.)</s1>
</fA11>
<fA14 i1="01">
<s1>Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>025010.1-025010.5</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000182514710110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0099574</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronics industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C40N</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Couche superficielle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Surface layers</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Mémoire accès direct</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Random-access storage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Conductivité hyperfréquence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Microwave conductivity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Conductividad hiperfrecuencia</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dispositif semiconducteur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Semiconductor devices</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Microélectronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Microelectronics</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Microscope balayage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Scanning microscope</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Microscopio barrido</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Revêtement protecteur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Protective coatings</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Structure MIM</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>MIM structures</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>7340N</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Microscopie capacité balayage</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Scanning capacitance microscopy</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>070</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0099574
   |texte=   Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024